TSQSS-PC2HG-xxM

200G QSFP56 to 4×50G SFP56 Direct Attach Cable

Description

QSFP56 Direct Attach Cables are compliant with the SFF-8665 specifications. SFP56 Direct Attach Cables are compliant with SFF-8432 and SFF-8402 specifications. Various choices of wire gauge are available from 30 to 26 AWG with various choices of cable length (up to 3 m).

Features

- QSFP56 and 4X SFP56 breakout form factor
- · 26-30AWG support up to 3m length max
- Maximum aggregate data rate: 200Gb/s
- Compatible to SFF-8665 and SFF-8432
- Single 3.3V power supply
- Temperature Range: 0 °C to 70 °C
- RoHS Compliant

- · Switches, servers and routers
- · Data Center networks
- Storage area networks
- · High performance computing
- · Telecommunication and wireless infrastructure
- · Medical diagnostics and networking
- · Test and measurement equipment
- 200G Ethernet (IEEE 802.3cd)

Parameters	Symbol	Min.	Max.	Unit
Operating Case Temperature	Торс	0	70	degC
Storage Temperature	Tst	-40	85	degC
Relative Humidity (non-condensation)	RS	35	60	%
Supply Voltage	Vcc3	3.135	3.465	V
Voltage on LVTTL Input	Vilvttl	-0.3	Vcc3+0.2	V
Power Supply Current	Icc3	-	15	mA

Total Power Consumption	Pd	-	0.05	W
•				

Notes:

Stress or conditions exceed the above range may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not applied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

High Speed Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Differential Impedance	TDR	90	100	110	Ω	-
Insertion Loss	SDD21	-16.06	-	-	dB	At 13.28 GHz
Differential Input Return Loss	SDD11 SDD22	-	-	See 1	dB	At 0.05 to 4.1 GHz
		-	-	See 2		At 4.1 to 19 GHz
Common Mode Output Return Loss	SCC11	-	-	-2	dB	At 0.2 to 19 GHz
Differential to Common-mode Return Loss	SCD11 SCD22	-	-	See 3	dB	At 0.01 to 12.89 GHz
		-	-	See 4		At 12.89 to 19 GHz
Differential to Common-mode Conversion Loss	SCD21-IL	-	-	-10	dB	At 0.01 to 12.89 GHz
		-	-	See 5		At 12.89 to 15.7 GHz
		-	-	-6.3		At 15.7 to 19 GHz

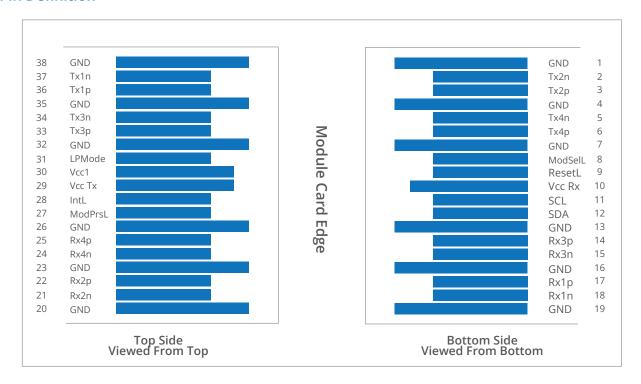
Notes:

[1] Reflection Coefficient given by equation SDD11(dB) < -16.5 + 2 \times SQRT(f), with f in GHz

[2] Reflection Coefficient given by equation SDD11(dB) < -10.66 + 14 \times log10(f/5.5), with f in GHz

[3] Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz

[4] Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz

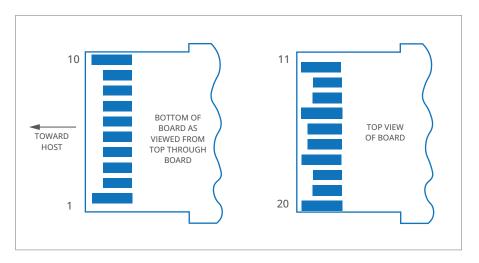

[5] Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz

QSFP56 Pin Definition

Pin	Symbol	Name/Description
1	GND	Ground
2	Tx2n	Transmitter Inverted Data Input
3	Tx2p	Transmitter Non-Inverted Data Input
4	GND	Ground
5	Tx4n	Transmitter Inverted Data Input
6	Tx4p	Transmitter Non-Inverted Data Input
7	GND	Ground
8	ModSelL	Module Select
9	ResetL	Module Reset
10	Vcc Rx	+3.3V Power supply receiver
11	SCL	2-wire serial interface clock
12	SDA	2-wire serial interface data
13	GND	Ground
14	Rx3p	Receiver Non-Inverted Data Output

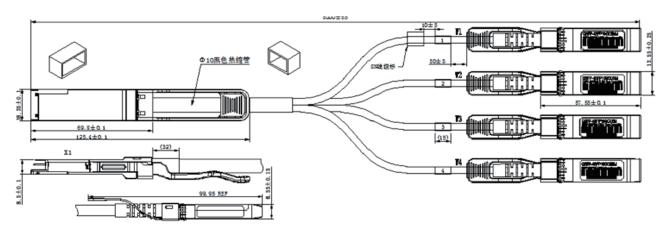
15	Rx3n	Receiver Inverted Data Output
16	GND	Ground
17	Rx1p	Receiver Non-Inverted Data Output
18	Rx1n	Transmitter Inverted DATA in. AC Coupled
19	GND	Ground
20	GND	Ground
21	Rx2n	Receiver Inverted Data Output
22	Rx2p	Receiver Non-Inverted Data Output
23	GND	Ground
24	Rx4n	Receiver Inverted Data Output
25	Rx4p	Receiver Non-Inverted Data Output
26	GND	Ground
27	ModPrsL	Module Present
28	IntL	Interrupt
29	Vcc Tx	+3.3V Power supply transmitter
30	Vcc1	+3.3V Power Supply
31	LPMode	Low Power Mode
32	GND	Ground
33	Tx3p	Transmitter Non-Inverted Data Input
34	Tx3n	Transmitter Inverted Data Input
35	GND	Ground
36	Tx1p	Transmitter Non-Inverted Data Input
37	Tx1n	Transmitter Inverted Data Input
38	GND	Ground

Pin Definition


SFP56 Pin Descriptions

Pin	Symbol	Name/Description
1	VeeT [1]	Transmitter Ground
2	Tx_FAULT [2]	Not used
3	Tx_DIS [3]	Not used
4	SDA [2]	2-wire Serial Interface Data Line
5	SCL [2]	2-wire Serial Interface Clock Line
6	MOD_ABS [4]	Module Absent. Grounded within the module
7	RS0 [5]	Not used
8	RX_LOS [2]	Loss of Signal indication. Logic 0 indicates normal operation
9	RS1 [5]	Not used
10	VeeR [1]	Receiver Ground
11	VeeR [1]	Receiver Ground
12	RD-	Receiver Inverted DATA out. AC Coupled
13	RD+	Receiver DATA out. AC Coupled
14	VeeR [1]	Receiver Ground
15	VccR	Receiver Power Supply
16	VccT	Transmitter Power Supply
17	VeeT [1]	Transmitter Ground
18	TD+	Transmitter DATA in. AC Coupled
19	TD-	Transmitter Inverted DATA in. AC Coupled

20	VeeT [1]	Transmitter Ground
----	----------	--------------------


Notes:

- [1] Module circuit ground is isolated from module chassis ground within the module.
- [2] Should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.6V.
- [3] Tx_Disable is an input contact with a 4.7 k Ω to 10 k Ω pullup to VccT inside the module.
- [4] Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range 4.7 k Ω to 10 k Ω .Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
- [5] RS0 and RS1 are module inputs and are pulled low to VeeT with > 30 k Ω resistors in the module.

Mechanical Dimensions

The connector is compatible with the SFF-8432 specification.

Ordering Information

200G QSFP56 4x50G SFP56 Copper Breakout Cable Assemblies, Passive.

P/N	Length	Data Rate	AWG	Length Tolerance
TSQSS-PC2HG-01M	1 m	200G	30	+3.5/-3.5 cm
TSQSS-PC2HG-02M	2 m	200G	30	+3.5/-3.5 cm
TSQSS-PC2HG-03M	3 m	200G	30	+4/-4 cm