TSQS-PC2HG-xxM

200G QSFP56 Direct Attach Cable

Description

QSFP56 passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 56Gbps (PAM4) per channel, and meets 200G Ethernet and InfiniBand requirements. Available in a broad range of wire gages-from 26AWG through 30AWG-this 200G copper cable assembly features low insertion loss and low cross talk.

QSFP56 uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics. Designed for applications in the data center, networking and telecommunications markets that require a high speed, reliable cable assembly, this next generation product shares the same mating interface with QSFP+ form factor, making it backward compatible with existing QSFP ports.

Features

- Compatible with IEEE 802.3bj and IEEE 802.3cd
- Supports aggregate data rates of 200Gbps (PAM4)
- Optimized construction to minimize insertion loss and cross talk
- Pull-to-release slide latch design
- 28AWG through 30AWG cable
- Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation
- Customizable EEPROM mapping for cable signature
- RoHS compliant

Applications

- · Switches, servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- Telecommunication and wireless infrastructure
- · Medical diagnostics and networking
- · Test and measurement equipment
- 200G Ethernet (IEEE 802.3cd)
- InfiniBand

Recommended Operation Condition

Parameters	Symbol	Min.	Max.	Unit
Operating Case Temperature	Торс	0	70	degC
Storage Temperature	Tst	-40	85	degC
Relative Humidity (non-condensation)	RS	35	60	%
Supply Voltage	Vcc3	3.135	3.465	V
Voltage on LVTTL Input	Vilvttl	-0.3	Vcc3+0.2	V
Power Supply Current	lcc3	-	15	mA
Total Power Consumption	Pd	-	0.05	W

Notes:

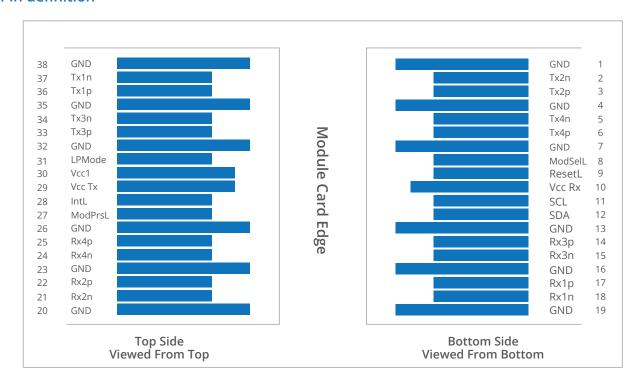
Stress or conditions exceed the above range may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not applied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Definition

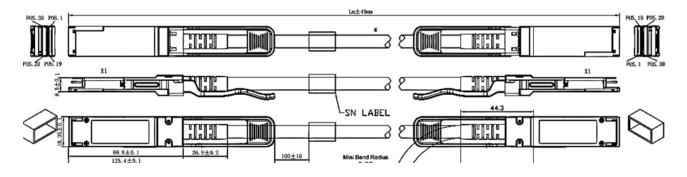
Pin	Logic	Symbol	Name/Description	
1	-	GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4	-	GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7	-	GND	Ground	
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10	-	Vcc Rx	+3.3V Power supply receiver	
4.4	LVCMOS-	CCI	2 ustra a satel terrations also de	
11	I/O	SCL	2-wire serial interface clock	
4.2	LVCMOS-	SDA	2-wire serial interface data	
12	I/O	SDA	z-wire seriai interiace data	
13	-	GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16	-	GND	Ground	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Transmitter Inverted DATA in. AC Coupled	
19	-	GND	Ground	
20	-	GND	Ground	
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	

23	-	GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26	-	GND	Ground
27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29	-	Vcc Tx	+3.3V Power supply transmitter
30	-	Vcc1	+3.3V Power Supply
31	LVTTL-I	LPMode	Low Power Mode
32	-	GND	Ground
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35	-	GND	Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38	-	GND	Ground


High Speed Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Differential Impedance	TDR	90	100	110	Ω	-
Insertion Loss	SDD21	-16.06	-	-	dB	At 13.28 GHz
Differential Input Return Loss	SDD11	-	-	See 1	dB	At 0.05 to 4.1 GHz
	SDD22	-	-	See 2		At 4.1 to 19 GHz
Common Mode Output Return Loss	SCC11	-	-	-2	dB	At 0.2 to 19 GHz
Differential to Common-mode	SCD11	-	-	See 3	dB	At 0.01 to 12.89 GHz At 12.89 to 19 GHz
Return Loss	SCD22	-	-	See 4		
Differential to Common-mode Conversion Loss	SCD21-IL	-	-	-10	dB	At 0.01 to 12.89 GHz
		-	-	See 5		At 12.89 to 15.7 GHz
		-	-	-6.3		At 15.7 to 19 GHz

Notes:


- [1] Reflection Coefficient given by equation SDD11(dB) < -16.5 + 2 \times SQRT(f), with f in GHz
- [2] Reflection Coefficient given by equation SDD11(dB) < -10.66 + 14 \times log10(f/5.5), with f in GHz
- [3] Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz
- [4] Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz
- [5] Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz

Pin definition

Mechanical Dimensions

The connector is compatible with the SFF-8436 specification.

Length (m)	Cable AWG
1	30
3	30
5	26
7	26

Regulatory Compliance

Feature	Test Method	Performance	
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1 (>2000 Volts)	
	FCC Class B	Compliant with Standards	
Electromagnetic Interference (EMI)	CENELEC EN55022 Class B		
	CISPR22 ITE Class B		
RF Immunity (RFI)	IEC61000-4-3	Typically Show no Measurable Effect from a 10V/m Field Swept from 80 to 1000MHz	
RoHS Compliance	RoHS Directive 2011/65/EU and it's Amendment Directives 6/6	RoHS 6/6 compliant	