FBG Strain Sensor

Description

FBG strain sensor is a strain measurement sensor based on fiber Bragg grating. It can monitor the strain value of the measured object by measuring the spectral shifts of FBG.

Applications

- Suitable for application scenarios where traditional resistance strain gauges used
- Suitable for application scenarios where traditional surface-mounted resistance strain gauges used
- Suitable for harsh environments with the requirements of high anti-electromagnetic interference and explosion-proof

Features

- Gauge length the same as standard resistance strain gauges
- Passive and free from electromagnetic interference
- · High networking with series or parallel connected
- Lifespan >10⁷ cycles ($\pm 1500\mu\epsilon$)
- High stability, no zero-point drift

Specification

Strain	Unit	Specification
Gauge Length	mm	3
Strain Sensitivity k_{ϵ}	pm/uɛ	~1.3
Strain Range	uε	±3000
Linearity	%	99.9
Temperature Range	°C	-40~+85
Temperature	Unit	Specification
Temperature Sensitivity k_T	pm/°C	~28
Temperature Range	°C	-40~+85
Optics	Unit	Specification
Central Wavelength	nm	1510-1590

Reflectivity	%	≥10
SMSR	dB	≥15
Machinery	Unit	Specification
Dimension	L(mm)×W(mm) ×T(mm)	~19×7×0.7
Connector Type	-	FC/SC/LC/MT
Pigtail Length	m	1.0
Fiber Bending Radius	mm	10
Pigtail Protection Type	-	Optical fiber ribbon +0.9mm tube
Reliability	-	Conform to GR-1221-Core

Microstrain (με) Calculation Formula:

$$\mu \varepsilon = \frac{\lambda_{\varepsilon} - \lambda_1}{k_{\varepsilon}} \times 10^3 - (26.0 + \Delta) \times (T_{\varepsilon} - T_1)$$

where,

 λ_1 : Wavelength after the strain gauge is installed when the ambient temperature is T_1 (°C), unit: nm.

 λ_{ε} : The wavelength after the strain gauge is installed under load and the ambient temperature is T_{ε} (°C), unit: nm.

 Δ : The difference in linear expansion coefficient between the material under test and the base material of the strain gauge, the specific expression is: $\Delta = \alpha - 18.4 \times 10^{-6} \times 10^{6}$, where, α is the linear expansion coefficient of the material under test, unit: /°C.

